Efficient introduction of a bisecting GlcNAc residue in tobacco N-glycans by expression of the gene encoding human N-acetylglucosaminyltransferase III.

نویسندگان

  • Gerard J A Rouwendal
  • Manfred Wuhrer
  • Dion E A Florack
  • Carolien A M Koeleman
  • André M Deelder
  • Hans Bakker
  • Geert M Stoopen
  • Irma van Die
  • Johannes P F G Helsper
  • Cornelis H Hokke
  • Dirk Bosch
چکیده

In this study, we show that introduction of human N-acetylglucosaminyltransferase (GnT)-III gene into tobacco plants leads to highly efficient synthesis of bisected N-glycans. Enzymatically released N-glycans from leaf glycoproteins of wild-type and transgenic GnT-III plants were profiled by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in native form. After labeling with 2-aminobenzamide, profiling was performed using normal-phase high-performance liquid chromatography with fluorescence detection, and glycans were structurally characterized by MALDI-TOF/TOF-MS and reverse-phase nano-liquid chromatography-MS/MS. These analyses revealed that most of the complex-type N-glycans in the plants expressing GnT-III were bisected and carried at least two terminal N-acetylglucosamine (GlcNAc) residues in contrast to wild-type plants, where a considerable proportion of N-glycans did not contain GlcNAc residues at the nonreducing end. Moreover, we have shown that the majority of N-glycans of an antibody produced in a plant expressing GnT-III is also bisected. This might improve the efficacy of therapeutic antibodies produced in this type of transgenic plant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological consequences of overexpressing or eliminating N-acetylglucosaminyltransferase-TIII in the mouse.

N-acetylglucosaminyltransferase III (GlcNAc-TIII), a product of the human MGAT3 gene, was discovered as a glycosyltransferase activity in hen oviduct. GlcNAc-TIII transfers GlcNAc in beta4-linkage to the core Man of complex or hybrid N-glycans, and thereby alters not only the composition, but also the conformation of the N-glycan. The dramatic consequences of the addition of this bisecting GlcN...

متن کامل

Isolation, characterization and inactivation of the mouse Mgat3 gene: the bisecting N-acetylglucosamine in asparagine-linked oligosaccharides appears dispensable for viability and reproduction.

The biosynthesis of complex asparagine (N)-linked oligosaccharides in vertebrates proceeds with the linkage of N-acetylglucosamine (GlcNAc) to the core mannose residues. UDP-N-acetylglucosamine:beta-D-mannoside beta 1-4 N-acetylglucosaminyltransferase III (GlcNAc-TIII, EC2.4.1.144) catalyzes the addition of GlcNAc to the mannose that is itself beta 1-4 linked to underlying N-acetylglucosamine. ...

متن کامل

The role of N-acetylglucosaminyltransferase III and V in the post-transcriptional modifications of E-cadherin.

It has long been recognized that E-cadherin dysfunction is a major cause of epithelial cell invasion. However, very little is known about the post-transcriptional modifications of E-cadherin and its role in E-cadherin mediated tumor progression. N-acetylglucosaminyltransferase III (GnT-III) catalyzes the formation of a bisecting GlcNAc structure in N-glycans, and has been pointed as a metastasi...

متن کامل

Ectopic expression of N-acetylglucosaminyltransferase III in transgenic hepatocytes disrupts apolipoprotein B secretion and induces aberrant cellular morphology with lipid storage (N-glycosylationytransgenic miceybisecting GlcNAcyglycosyltransferase)

N-Acetylglucosaminyltransferase III (GnTIII) produces ‘‘bisecting-GlcNAc’’ and regulates the branching of N-glycans. GnT-III activity is elevated during hepatocarcinogenesis, which is in contrast to the undetectable level found in normal hepatocytes. To determine the biological significance of GnT-III in hepatocytes, transgenic mice that specifically express GnT-III in the liver were establishe...

متن کامل

Molecular analysis of three gain-of-function CHO mutants that add the bisecting GlcNAc to N-glycans.

LEC10 Chinese hamster ovary (CHO) cells are gain-of-function mutants that express N-acetylglucosaminyltransferase III (GlcNAc-TIII), the glycosyltransferase that adds the bisecting GlcNAc to complex N-glycans. LEC10 cells are useful for glycosylation engineering of recombinant glycoproteins, including antibody therapeutics, for defining lectin recognition specificities and for determining biolo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Glycobiology

دوره 17 3  شماره 

صفحات  -

تاریخ انتشار 2007